Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Microbiol ; 121(4): 742-766, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38204420

RESUMO

Microbial cells must continually adapt their physiology in the face of changing environmental conditions. Archaea living in extreme conditions, such as saturated salinity, represent important examples of such resilience. The model salt-loving organism Haloferax volcanii exhibits remarkable plasticity in its morphology, biofilm formation, and motility in response to variations in nutrients and cell density. However, the mechanisms regulating these lifestyle transitions remain unclear. In prior research, we showed that the transcriptional regulator, TrmB, maintains the rod shape in the related species Halobacterium salinarum by activating the expression of enzyme-coding genes in the gluconeogenesis metabolic pathway. In Hbt. salinarum, TrmB-dependent production of glucose moieties is required for cell surface glycoprotein biogenesis. Here, we use a combination of genetics and quantitative phenotyping assays to demonstrate that TrmB is essential for growth under gluconeogenic conditions in Hfx. volcanii. The ∆trmB strain rapidly accumulated suppressor mutations in a gene encoding a novel transcriptional regulator, which we name trmB suppressor, or TbsP (a.k.a. "tablespoon"). TbsP is required for adhesion to abiotic surfaces (i.e., biofilm formation) and maintains wild-type cell morphology and motility. We use functional genomics and promoter fusion assays to characterize the regulons controlled by each of TrmB and TbsP, including joint regulation of the glucose-dependent transcription of gapII, which encodes an important gluconeogenic enzyme. We conclude that TrmB and TbsP coregulate gluconeogenesis, with downstream impacts on lifestyle transitions in response to nutrients in Hfx. volcanii.


Assuntos
Proteínas Arqueais , Haloferax volcanii , Haloferax volcanii/genética , Glucose/metabolismo , Redes e Vias Metabólicas , Glicoproteínas de Membrana/metabolismo , Fenótipo , Proteínas Arqueais/metabolismo
2.
PLoS Genet ; 20(1): e1011115, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38227606

RESUMO

Timely regulation of carbon metabolic pathways is essential for cellular processes and to prevent futile cycling of intracellular metabolites. In Halobacterium salinarum, a hypersaline adapted archaeon, a sugar-sensing TrmB family protein controls gluconeogenesis and other biosynthetic pathways. Notably, Hbt. salinarum does not utilize carbohydrates for energy, uncommon among Haloarchaea. We characterized a TrmB-family transcriptional regulator in a saccharolytic generalist, Haloarcula hispanica, to investigate whether the targets and function of TrmB, or its regulon, is conserved in related species with distinct metabolic capabilities. In Har. hispanica, TrmB binds to 15 sites in the genome and induces the expression of genes primarily involved in gluconeogenesis and tryptophan biosynthesis. An important regulatory control point in Hbt. salinarum, activation of ppsA and repression of pykA, is absent in Har. hispanica. Contrary to its role in Hbt. salinarum and saccharolytic hyperthermophiles, TrmB does not act as a global regulator: it does not directly repress the expression of glycolytic enzymes, peripheral pathways such as cofactor biosynthesis, or catabolism of other carbon sources in Har. hispanica. Cumulatively, these findings suggest rewiring of the TrmB regulon alongside metabolic network evolution in Haloarchaea.


Assuntos
Gluconeogênese , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Gluconeogênese/genética , Archaea/genética , Regulação da Expressão Gênica em Archaea , Carboidratos , Carbono/metabolismo
3.
Nucleic Acids Res ; 52(1): 125-140, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-37994787

RESUMO

Maintaining the intracellular iron concentration within the homeostatic range is vital to meet cellular metabolic needs and reduce oxidative stress. Previous research revealed that the haloarchaeon Halobacterium salinarum encodes four diphtheria toxin repressor (DtxR) family transcription factors (TFs) that together regulate the iron response through an interconnected transcriptional regulatory network (TRN). However, the conservation of the TRN and the metal specificity of DtxR TFs remained poorly understood. Here we identified and characterized the TRN of Haloferax volcanii for comparison. Genetic analysis demonstrated that Hfx. volcanii relies on three DtxR transcriptional regulators (Idr, SirR, and TroR), with TroR as the primary regulator of iron homeostasis. Bioinformatics and molecular approaches revealed that TroR binds a conserved cis-regulatory motif located ∼100 nt upstream of the start codon of iron-related target genes. Transcriptomics analysis demonstrated that, under conditions of iron sufficiency, TroR repressed iron uptake and induced iron storage mechanisms. TroR repressed the expression of one other DtxR TF, Idr. This reduced DtxR TRN complexity relative to that of Hbt. salinarum appeared correlated with natural variations in iron availability. Based on these data, we hypothesize that variable environmental conditions such as iron availability appear to select for increasing TRN complexity.


Assuntos
Proteínas de Bactérias , Redes Reguladoras de Genes , Haloferax volcanii , Ferro , Proteínas de Bactérias/metabolismo , Haloferax volcanii/genética , Haloferax volcanii/metabolismo , Homeostase/genética , Ferro/metabolismo , Metais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
mBio ; 14(2): e0344922, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36779711

RESUMO

Histone proteins are found across diverse lineages of Archaea, many of which package DNA and form chromatin. However, previous research has led to the hypothesis that the histone-like proteins of high-salt-adapted archaea, or halophiles, function differently. The sole histone protein encoded by the model halophilic species Halobacterium salinarum, HpyA, is nonessential and expressed at levels too low to enable genome-wide DNA packaging. Instead, HpyA mediates the transcriptional response to salt stress. Here we compare the features of genome-wide binding of HpyA to those of HstA, the sole histone of another model halophile, Haloferax volcanii. hstA, like hpyA, is a nonessential gene. To better understand HpyA and HstA functions, protein-DNA binding data (chromatin immunoprecipitation sequencing [ChIP-seq]) of these halophilic histones are compared to publicly available ChIP-seq data from DNA binding proteins across all domains of life, including transcription factors (TFs), nucleoid-associated proteins (NAPs), and histones. These analyses demonstrate that HpyA and HstA bind the genome infrequently in discrete regions, which is similar to TFs but unlike NAPs, which bind a much larger genomic fraction. However, unlike TFs that typically bind in intergenic regions, HpyA and HstA binding sites are located in both coding and intergenic regions. The genome-wide dinucleotide periodicity known to facilitate histone binding was undetectable in the genomes of both species. Instead, TF-like and histone-like binding sequence preferences were detected for HstA and HpyA, respectively. Taken together, these data suggest that halophilic archaeal histones are unlikely to facilitate genome-wide chromatin formation and that their function defies categorization as a TF, NAP, or histone. IMPORTANCE Most cells in eukaryotic species-from yeast to humans-possess histone proteins that pack and unpack DNA in response to environmental cues. These essential proteins regulate genes necessary for important cellular processes, including development and stress protection. Although the histone fold domain originated in the domain of life Archaea, the function of archaeal histone-like proteins is not well understood relative to those of eukaryotes. We recently discovered that, unlike histones of eukaryotes, histones in hypersaline-adapted archaeal species do not package DNA and can act as transcription factors (TFs) to regulate stress response gene expression. However, the function of histones across species of hypersaline-adapted archaea still remains unclear. Here, we compare hypersaline histone function to a variety of DNA binding proteins across the tree of life, revealing histone-like behavior in some respects and specific transcriptional regulatory function in others.


Assuntos
Proteínas Arqueais , Histonas , Humanos , Histonas/metabolismo , Proteínas de Ligação a DNA/metabolismo , Archaea/genética , Cromatina , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , DNA/química , DNA Intergênico , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , DNA Arqueal/genética , DNA Arqueal/química
5.
Int J Mol Sci ; 20(19)2019 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-31561502

RESUMO

Haloferax volcanii, a well-developed model archaeon for genomic, transcriptomic, and proteomic analyses, can grow on a defined medium of abundant and intermediate levels of fixed nitrogen. Here we report a global profiling of gene expression of H. volcanii grown on ammonium as an abundant source of fixed nitrogen compared to l-alanine, the latter of which exemplifies an intermediate source of nitrogen that can be obtained from dead cells in natural habitats. By comparing the two growth conditions, 30 genes were found to be differentially expressed, including 16 genes associated with amino acid metabolism and transport. The gene expression profiles contributed to mapping ammonium and l-alanine usage with respect to transporters and metabolic pathways. In addition, conserved DNA motifs were identified in the putative promoter regions and transcription factors were found to be in synteny with the differentially expressed genes, leading us to propose regulons of transcriptionally co-regulated operons. This study provides insight to how H. volcanii responds to and utilizes intermediate vs. abundant sources of fixed nitrogen for growth, with implications for conserved functions in related halophilic archaea.


Assuntos
Regulação da Expressão Gênica em Archaea , Haloferax volcanii/genética , Haloferax volcanii/metabolismo , Fixação de Nitrogênio , Nitrogênio/metabolismo , Aminoácidos/metabolismo , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Estudo de Associação Genômica Ampla , Redes e Vias Metabólicas , Transcriptoma
6.
J Mol Biol ; 431(20): 4147-4166, 2019 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-31437442

RESUMO

The environmental stress response (ESR), a global transcriptional program originally identified in yeast, is characterized by a rapid and transient transcriptional response composed of large, oppositely regulated gene clusters. Genes induced during the ESR encode core components of stress tolerance, macromolecular repair, and maintenance of homeostasis. In this review, we investigate the possibility for conservation of the ESR across the eukaryotic and archaeal domains of life. We first re-analyze existing transcriptomics data sets to illustrate that a similar transcriptional response is identifiable in Halobacterium salinarum, an archaeal model organism. To substantiate the archaeal ESR, we calculated gene-by-gene correlations, gene function enrichment, and comparison of temporal dynamics. We note reported examples of variation in the ESR across fungi, then synthesize high-level trends present in expression data of other archaeal species. In particular, we emphasize the need for additional high-throughput time series expression data to further characterize stress-responsive transcriptional programs in the Archaea. Together, this review explores an open question regarding features of global transcriptional stress response programs shared across domains of life.


Assuntos
Adaptação Fisiológica , Regulação da Expressão Gênica em Archaea , Halobacterium salinarum/genética , Estresse Fisiológico , Transcrição Gênica , Fungos/genética , Perfilação da Expressão Gênica
7.
Nat Genet ; 50(11): 1501-1504, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30297967

RESUMO

Some of the most unique and compelling survival strategies in the natural world are fixed in isolated species1. To date, molecular insight into these ancient adaptations has been limited, as classic experimental genetics has focused on interfertile individuals in populations2. Here we use a new mapping approach, which screens mutants in a sterile interspecific hybrid, to identify eight housekeeping genes that underlie the growth advantage of Saccharomyces cerevisiae over its distant relative Saccharomyces paradoxus at high temperature. Pro-thermotolerance alleles at these mapped loci were required for the adaptive trait in S. cerevisiae and sufficient for its partial reconstruction in S. paradoxus. The emerging picture is one in which S. cerevisiae improved the heat resistance of multiple components of the fundamental growth machinery in response to selective pressure. Our study lays the groundwork for the mapping of genotype to phenotype in clades of sister species across Eukarya.


Assuntos
Adaptação Fisiológica/genética , Saccharomyces cerevisiae/genética , Termotolerância/genética , Elementos de DNA Transponíveis/genética , Ligação Genética , Variação Genética , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Organismos Geneticamente Modificados , Saccharomyces cerevisiae/crescimento & desenvolvimento , Análise de Sequência de DNA , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...